EVOLUTION OF TKR IMPLANTS AND PHILOSOPHIES

Dr Ulhas Sonar,

MBBS, MS (Ortho)

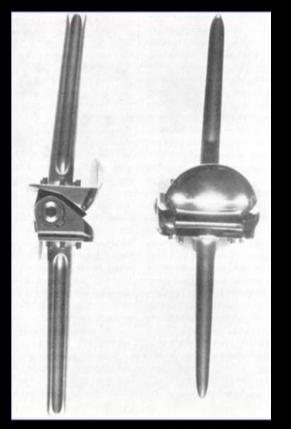
MCh Upper Limb

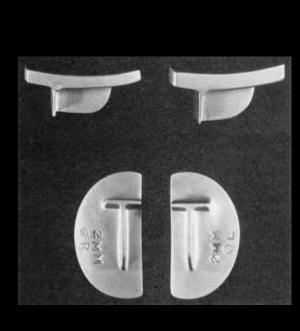
MRCS, FEBOT,

FRCS(JCIE, UK) PGDip in Computer Assisted TKR

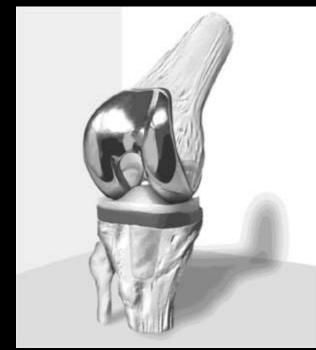
WHAT ARE WE DISCUSSING TODAY? ≻CONCEPTS OF DESIGN

BROAD CLASSIFICATION AND THEIR PROS AND CONS


>NEWER DESIGNS

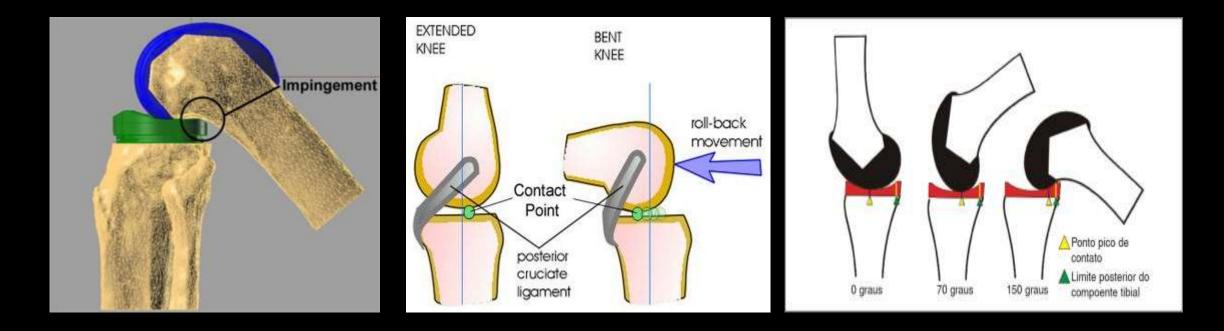

VK NJR DATA

> DETAILS OF TWO MOST USED IN IMPLANTS UK


>RESULTS OF SOME OF OLD/STILL USED IMPLANTS AS PER NJR UK

HISTORICAL IMPLANTS

 Walldius Hinge 1950s


MacIntosh and McKeever 1958

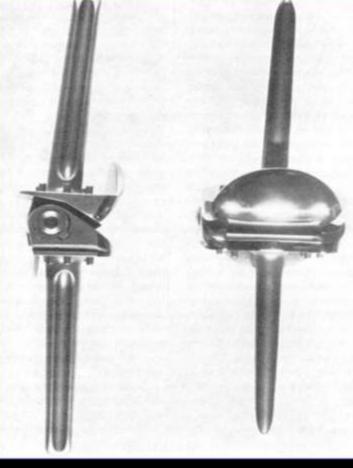
Gunston 1960

"Total condylar prosthesis 1973

CONCEPTS IN PROSTHETIC DESIGN

Femoral rollback


STABILITY


CONSTRAIN

MODULARITY

LOOSENING

WEAR

CONSTRAIN

- Provide Stability
- In Order Of Increased Constrain
 - Cruciate-retaining
 - Posterior-stabilized (Cruciate-substituting)
 - Varus-valgus Constrained (Non-hinged)
 - Rotating-hinge

Augment A Standard Prosthesis

Balance Soft Tissues And/Or Restore Bone Loss

Customize Implant Intraoperatively

➢Problem:

≻Osteolysis

Backside Polyethylene Wear

BASIC CLASSIFICATION

>Unconstrained

Posterior-cruciate retaining (CR)
 Posterior-cruciate substituting (PS)

Constrained Non hinged Hinged

Fixed versus mobile bearing

CRUCLATE-RETAINING (CR) DESIGN

>Minimally Constrained

 Indications
 Minimal Bone Loss/ Soft Tissue Laxity, And An Intact PCL

Varus Deformity < 10 Degrees</p>

>Valgus Deformity < 15 Degrees

CRUCLATE-RETAINING (CR) DESIGN

Advantages

No Post-cam Impingement/Dislocation
 Normal Knee Kinematics
 Bone Preservation
 Proprioception
 Newer Poly-options

> Disadvantages

Difficult to balance

>Tight PCL Leads To Polyethylene Wear

Loose PCL May Lead To Flexion Instability And Subluxation

More Constrained

>Increased The Flexion Gap

➢ Femoral Cam

Polyethylene More Congruent, Or Deeply "Dished"

Indications
Previous Patellectomy

>Weak Extensor Mechanism

>Inflammatory Arthritis

Deficient Or Absent PCL

>Advantages

Easier To Balance A Knee With Absent PCL

>Arguably More Range Of Motion

Easier Surgical Exposure

Disadvantages

➤Cam Jump Dislocate

≻Tibial Post Polyethylene Wear

> Patellar "Clunk Syndrome

CONSTRAINED NONHINGED DESIGN

Without Axle Connecting Tibial And Femoral Components (Nonhinged)

Large Tibial Post And Deep Femoral Box Provide

Varus/Valgus Stability

Rotational Stability

CONSTRAINED NONHINGED DESIGN

>Indications

LCL Attenuation Or Deficiency

>MCL Attenuation Or Deficiency

Flexion Gap Laxity

Moderate Bone Loss In The Setting Of Neuropathic Arthropathy

CONSTRAINED NONHINGED DESIGN

Advantages

Stability

Disadvantages

>More Femoral Bone Resection

>Aseptic Loosening

CONSTRAINED HINGED DESIGN

Linked Femoral And Tibial Components (Hinged)

Tibial Bearing Rotates Around A Yoke On The Tibial Platform (Rotating Hinge)

Decreases Overall Level Of Constraint

CONSTRAINED HINGED DESIGN

➢Indications

Global Ligamentous Deficiency

Hyperextension Instability

Resection For Tumour

➤Massive Bone Loss

CONSTRAINED HINGED DESIGN

>Advantages

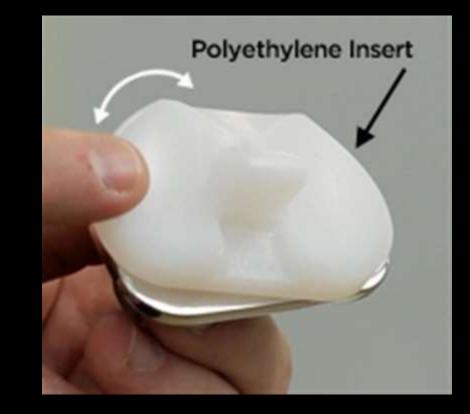
≻Stability

Disadvantages

Aseptic loosening

➤Large bone resection

MOBILE BEARING DESIGN


>Minimally constrained

➢Polyethylene rotate

>PCL is removed at time of surgery

>Indications

> Young, active patients (relative indication)

MOBILE BEARING DESIGN

Advantages

➢ Reduces Wear

Increased Contact Area

Disadvantages

Bearing Spin-out

ALL-POLYETHYLENE BASE PLATES

➢Design

Solid Block Of Polyethylene

➢Indications

>No Clear Indications

ALL-POLYETHYLENE BASE PLATES

Advantages

- Less Expensive
- Decreased Osteolysis

DisadvantagesLose Modular Flexibility

>Outcomes

Equivalent Outcomes With Decreased Cost

HIGHLY CONGRUENT LINERS

≻Design

Medial Compartment Concavity Allows Lateral Compartment To Translate Between Flexion And Extension

>This Creates A Medial Pivot

>Indications

>No Clear Indications

HIGHLY CONGRUENT LINERS

>Advantages

> May Better Create Native Knee Kinematics

≻Outcomes

Equivalent Outcomes And Survivorship In Short And Mid-term Studies

PATIENT SPECIFIC INSTRUMENTATION > Design

Instrumentation Based On Imaging Specific To Patient's Anatomy

>Indications

>No Clear Indications At This Time

>Advantages

Less Instrumentation To Process Peri-operatively

>Outcomes showed no benefit in

Cost Benefit

Postoperative TKA Alignment

Outcomes Or Patient Satisfaction

WHAT DOES SURGEON WANT

>Work Flawlessly, switch between CR-PS-more constrained

> Perfect Alignment

>Offer Options For Every Surgical Indication

Satisfy The Surgeon's Preference

➢Greater Simplicity

Increased Conformity

> Polyethylene Wear Reduction.

IDEAL IMPLANT

SIMPLE

>LEAST CONSTRAINT

>MOST STABLE

LEAST WEAR

>LIGAMENT PRESERVATION

NJR UK (NATIONAL JOINT REGISTRY) UK REPORT 2022

Fixation, constraint and bearing type	Number of primary knee operations	Percentage of each constraint type used within each method of fixation	Percentage of all primary knee operations 100.0	
All types	1,442,051			
Total knee replacement				
All cemented	1,206,605		83.7	
unconstrained, fixed	832,844	69.0	57.8	
unconstrained, mobile	41,741	3.5	2.9	
posterior-stabilised, fixed	284,858	23.6	19.8	
posterior-stabilised, mobile	13,486	1.1	0.9	
constrained condylar	12,225	1.0	0.8	
monobloc polyethylene tibla	19,151	1.6	1.3	
pre-assembled/hinged/linked	2,300	0.2	0.2	
All uncemented	48,781		3.4	
unconstrained, fixed	, 19,115	39.2	1.3	
unconstrained, mobile	25,860	53.0	1.8	
posterior-stabilised, fixed	3,510	7.2	0.2	
other constraints	296	0.6	<0.1	
All hybrid	10,116		0.7	
unconstrained, fixed	6,593	65.2	0.5	
unconstrained, mobile	2,184	21.6	0.2	
posterior-stabilised, fixed	923	9.1	0.1	
other constraints	416	4.1	<0.1	
Unicompartmental knee replacement				
All unicondylar, cemented	103,385		7.2	
fixed	46,346	44.8	3.2	
mobile	50,506	48.9	3.5	
monobloc polyethylene tibia	6,533	6.3	0.5	
All unicondylar, uncemented/hybrid	33,508		2.3	
fixed	1,421	4.2	0.1	
mobile	31,611	94.3	2.2	
monobloc polyethylene tibia	476	1.4	<0.1	
Patellofemoral	16,476		1.1	
Muiticompartmentai	622		<0.1	
Unconfirmed	22,558		1.6	

 Table 3.K1
 Number and percentage of primary knee replacements by fixation, constraint and bearing.

Fixation, constraint and bearing type

All types

Total knee replacement

All cemented

unconstrained, fixed

unconstrained, mobile

posterior-stabilised, fixed

posterior-stabilised, mobile

constrained condylar

monobioc polyethylene tibia

pre-assembled/hinged/linked

Table 3.K7 (a) KM estimates of cumulative revision (95% CI) by total knee replacement brands. Blue italics signify that fewer than 250 cases remained at risk at these time points.

Brand ¹		Median (IQR) age at primary Male (%)		Time since primary					
	N		Male (%)	1 year	3 years	5 years	10 years	15 years	18 years
All total knee replacements	1,265,502	70 (63 to 76)	43	0.43 (0.42-0.44)	1.47 (1.45-1.49)	2.10 (2.07-2.13)	3.19 (3.15-3.23)	4.31 (4.24-4.37)	5.12 (4.96-5.29)

PFC SIGMA

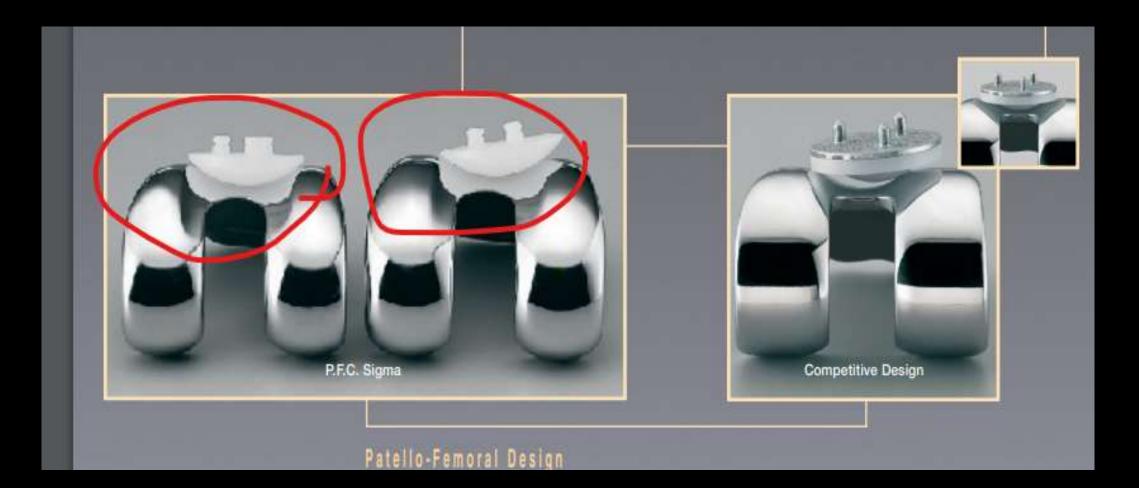
DEPUY SYNTHES

irand ¹		Median	Male (%)	Time since primary							
	N	(IQR) age at N primary		1 year	3 years	5 years	10 years	15 years	18 years		
ll total knee placements	1,265,502	70 (63 to 76)	43	0.43 (0.42-0.44)	1.47 (1.45-1.49)	2.10 (2.07-2.13)	3.19 (3.15-3.23)	4.31 (4.24-4.37)	5.12 (4.96-5.29)		
PFC Sigma Bicondylar Knee[Fem] M.B.T.[Tib]	17,483	65 (58 to 72)	47	0.63 (0.52-0.76)	2.00 (1.80-2.22)	2.77 (2.53-3.03)	3.93 (3.64-4.26)	4.99 (4.57-5.45)	5.06 (4.62-5.55)		
PFC Sigma Bicondylar Knee[Fem] PFC Bicondylar[Tib]	177,771	70 (64 to 76)	43	0.39 (0.36-0.42)	1.27 (1.21-1.32)	1.75 (1.68-1.81)	2.47 (2.39-2.56)	3.20 (3.09-3.32)	3.69 (3.47-3.93)		
PFC Sigma Bicondylar Knee[Fem] PFC Sigma Bicondylar[Tib]	201,837	70 (64 to 77)	42	0.37 (0.35-0.40)	1.38 (1.33-1.44)	1.93 (1.87-2.00)	2.60 (2.52-2.69)	2.99 (2.80-3.19)			

Deep And Extended Trochlear Groove

Matching Single-radius Dome Patella

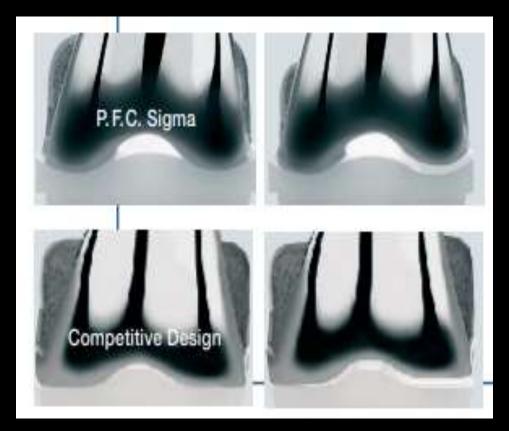
Maintain Maximum Contact Up To And Beyond 90° Flexion


Condylar Geometry Is Blended Into The Trochlear Groove

Patella meet Congruently With The Femoral Component Both In Perfect Alignment And Patellar Tilt.

The Patello-femoral Design Eliminates The Alignment Sensitivity

Patella Avoids The Point Contact

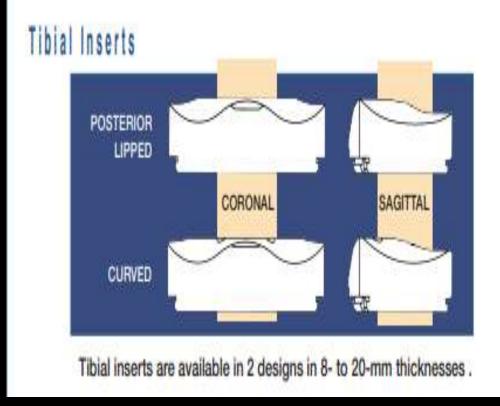


Coronal Geometry:

Rounded In The Coronal Plane

Maximizing Contact Area

Reducing Peak Stresses On The Polyethylene Insert


No Thrusts So No Edge Loading

POSTERIOR LIPPED The Broad Sagittal Radius Posterior Lip

The Rounded Coronal shape

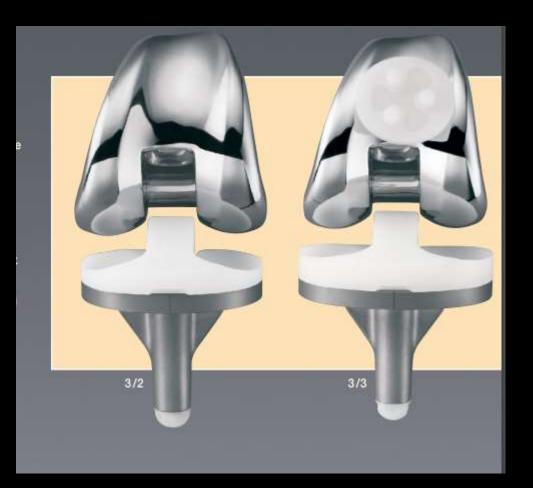
Curved A Single Sagittal Radius Provides Greater Conformity For Anterior-posterior Stability

Peak Stresses Below The Yield Strength Of Polyethylene

Gentle radius of curvature of patella

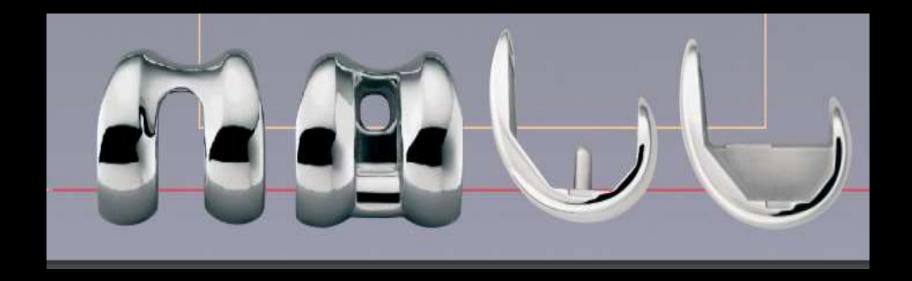
Deep single-radius trochlear groove Enables the patella to sit deeply at high flexion

High anterior flange keep the patella in constant contact with the femoral component.

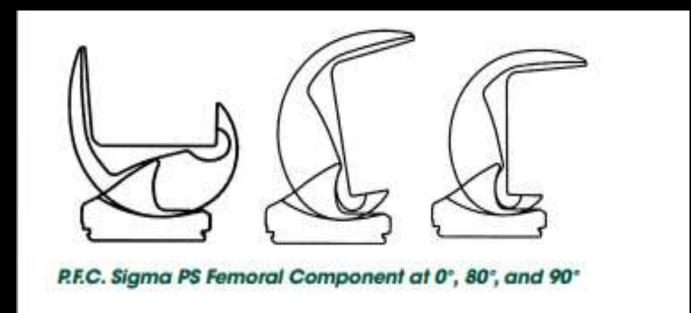

Tibial Trays Modular keel tibial trays porous and nonporous

These titanium trays buffers medial-lateral rotation and anteriorposterior liftoff.

With the ability to up- and downsize


A 3-size spread (one-up and one-down)

Easy Transition Between Cruciate-retaining And Cruciate-substituting


Femoral Components Coronal Geometry: Increased Condylar Conformity And Providing High Contact Area, Low Peak Stresses, And Protection Against Edge Loading

Sagittal Shape For Ease Of Patello-femoral Tracking And Congruent Patellar Contact Under Loading Conditions.

The Patented Cam And Spine Design

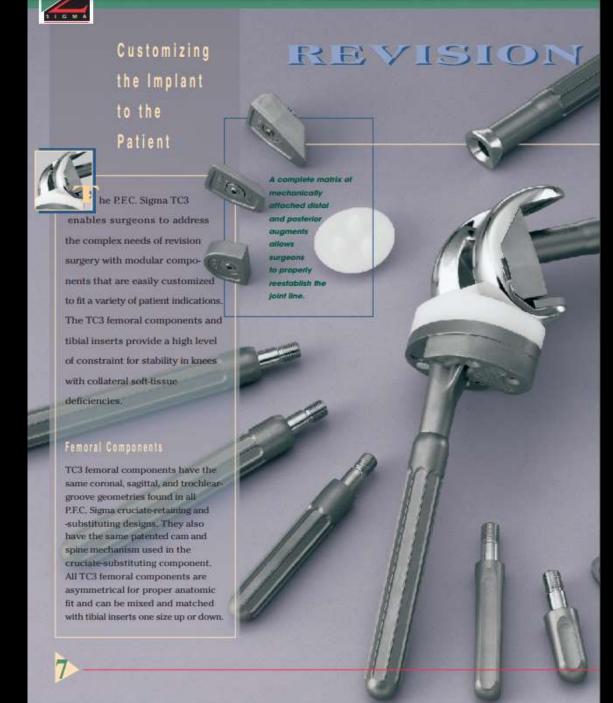
Cam: Shear Forces Are Consistently Transferred Into Compression.

Two types of cruciate-substituting inserts

Intraoperative choices for addressing softtissue deficiency and instability.

Posterior stabilized insert is used for primary cruciate substitution

Stabilized plus insert provides varusvalgus support and tighter medial-lateral rotation when additional collateral stability is indicated


ferred into compression. This differs from designs in which a posteriorly placed spine may make the component vulnerable to rapid rollback and posterior articulation. The P.F.C. Sigma liftoff value at 90° is 16.3 mm.

a Johnson Johnson company

* U.S. Patent 4298992, owned by the Hospital for Special Surgery (H.S.S.), New York City.

Modularity

Primary cruciate-substituting prostheses allow surgeons to utilize complete stem and augment options without changing prostheses or resecting more bone for revision procedures.

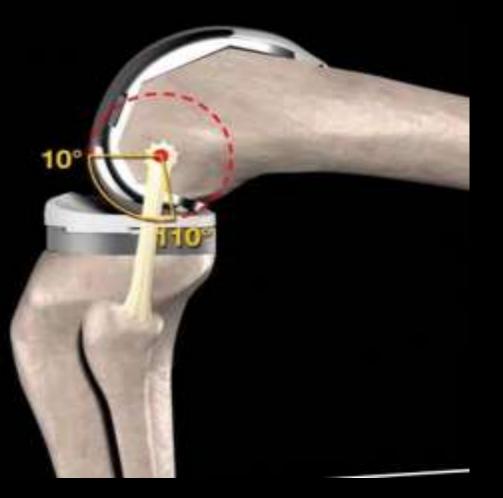
NEXGEN ZIMMER BIOMET

Brand ¹		Median	Median (IQR) age at primary Male (%)	Time since primary							
	N	age at		1 year	3 years	5 years	10 years	15 years	18 years		
All total knee replacements	1,265,502	70 (63 to 76)	43	0.43 (0.42-0.44)	1.47 (1.45-1.49)	2.10 (2.07-2.13)	0.0000000000000000000000000000000000000	4.31 (4.24-4.37)	5.12 (4.96-5.29)		
Nexgen[Fem:Tib]	183,105	70 (64 to 76)	42	0.38 (0.35-0.41)	1.26 (1.20-1.31)	1.97 (1.90-2.04)	3.38 (3.27-3.49)	4.52 (4.33-4.71)	5.32 (4.80-5.90)		

NexGen Knee replacement: affected patients should be offered additional follow up, DSI/2023/003

The National Joint Registry (NJR) has identified that both the NexGen® Stemmed Option Tibial Components, when paired with either the Legacy® Posterior Stabilized (LPS) Flex Option Femoral or the LPS Flex Gender Solutions Femoral (GSF) Option Femoral, had a higher overall revision rate and a higher revision rate for aseptic tibial loosening compared to the average revision rate of all other total knee replacements in the UK NJR.

TRITHLON STRYKER


Brand ¹		Median	10.110	Time since primary							
	N	(IQR) age at primary	Male (%)	1 year	3 years	5 years	10 years	15 years	18 years		
All total knee replacements	1,265,502	70 (63 to 76)	43	0.43 (0.42-0.44)	1.47 (1.45-1.49)	and the second		4.31 (4.24-4.37)	all a search of the second second second		
Triathlon[Fem:Tib]	162,424	70 (63 to 76)	43	0.48 (0.45-0.52)	1.42 (1.36-1.49)	1.98 (1.91-2.06)	2.89 (2.77-3.03)	3.79 (3.42-4.19)			

Experience the difference of our circular, single-radius design.

Ligament Balance

While femoral components of most knee systems create multiple turning radii during movement, the Stryker Triathlon system is built around a circular, Single Radius design. It's rotation is designed to mimic natural knee kinematics, allow for constant ligament balance, and offer enhanced stability throughout the active range of motion.¹¹⁻³⁰ Knee replacement has finally come full circle.

Shorter Posterior Condyle

The shorter posterior condyles facilitate the relaxation of the soft tissues to enable deep flexion⁶

Flared Posterior Condyles

Designed to accommodate 20 degrees of internal/external rotation throughout the range of motion⁷

Rotary Arc Precision machined surface facilitates internal/external rotation⁶

Anatomic Patellofemoral Track

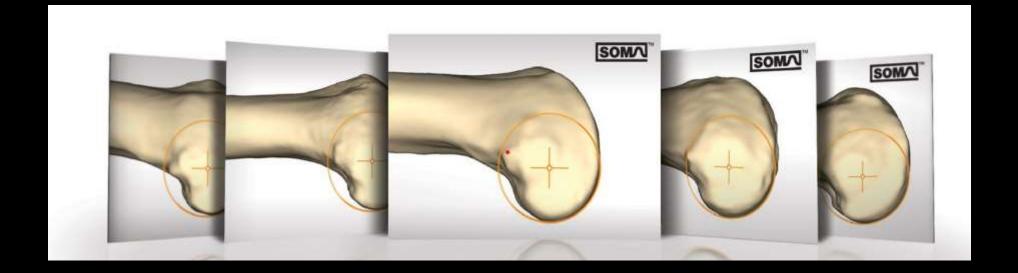
Designed with a deepened trochlear groove to help relax the extensor mechanism, enable deeper flexion, and reduce contact stresses exerted across the patella⁸

Triathlon is designed to allow for +/- 10 degrees of rotation in hyperextension and extension. In these early

degrees of motion, Triathlon has demonstrated less post impingement and torque forces than other designs.44

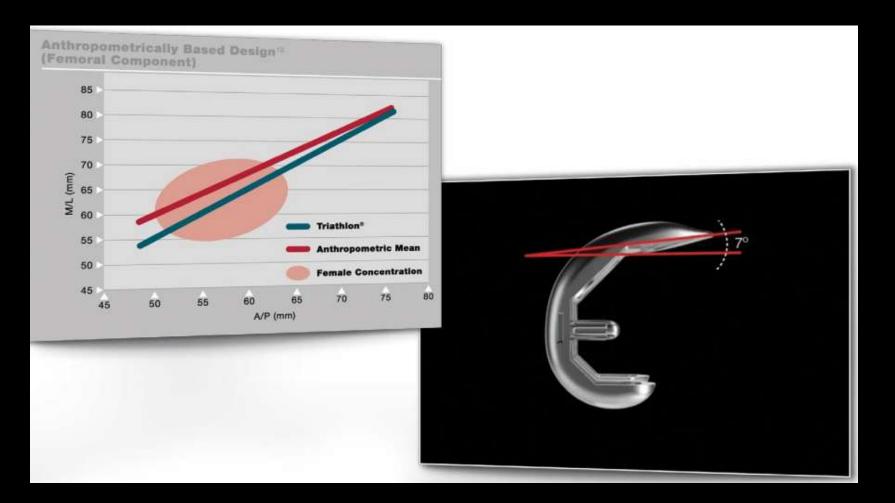
Reduced Extension Radius

The reduced extension radius is designed to avoid anterior impingement of the femoral component with the insert, enabling full extension to be achieved without the need for procedural compromise

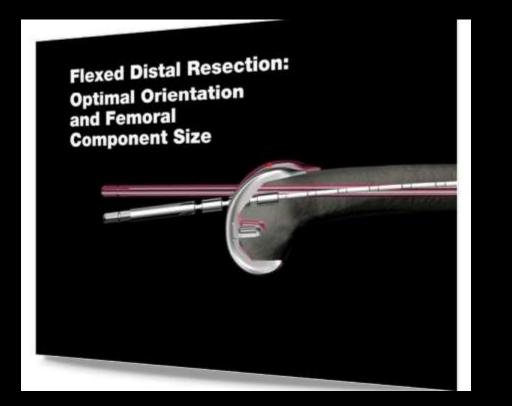


Stryker's single radius knee is designed to replace the way the knee moves

Traditionally thought shape of the posterior condyles oval in shape.


Modern research :

Along the transepicondylar axis, which revealed that the shapes of the posterior condyles were circular.



Improved Interplay Between Implant Geometry And Anatomic Structure For Women And Men. The Unique 7-degree Anterior Flange Design

Provide The Flexibility To Downsize The Femoral Component While Avoiding The Incidence Of Notching.

Triathlon also has a unique instrument that works with the patient's individual anterior femoral bow. Anterior bow of the femur varies widely.31 The Triathlon FlexRod bends to avoid making distal femoral resection in extension due to a patient's anterior femoral bow. In a retrospective study, by reducing the likelihood of making the distal resection in extension the FlexRod has been shown to allow more downsizing than the rigid rod.12 In a separate prospective study, patients whose procedure included the FlexRod had greater range of motion and higher KSS scores.12

OTHER IMPLANTS

Brand ¹ All total knee replacements		Median (IQR) age at primary 70 (63 to 76)	Male (%) 43	Time since primary							
	N 1,265,502			1 year	3 years		10 years 3.19 (3.15-3.23)	15 years 4.31 (4.24-4.37)	18 years 5.12 (4.96-5.29)		
				0.43 (0.42-0.44)	1.47 (1.45-1.49)						
Genesis II Oxinium[Fem] Genesis II[Tib]	11,829	59 (54 to 65)	40	0.57 (0.45-0.73)	2.32 (2.06-2.62)	3.43 (3.09-3.80)	5.96 (5.44-6.53)				
Genesis II[Fem:Tib]	90,539	71 (65 to 77)	42	0.47 (0.43-0.52)	1.46 (1.38-1.55)	2.01 (1.91-2.11)	2.97 (2.83-3.12)	3.42 (3.20-3.64)			

Brand ¹		Median		Time since primary							
	N	(IQR) age at primary	Male (%)	1 year	3 years	5 years	10 years	15 years	18 years		
All total knee replacements	1,265,502	70 (63 to 76)	43	0.43 (0.42-0.44)	1.47 (1.45-1.49)	2.10 (2.07-2.13)	3.19 (3.15-3.23)	4.31 (4.24-4.37)	5.12 (4.96-5.29)		
Vanguard[Fem:Tib]	88,536	70 (63 to 76)	42	0.40 (0.36-0.44)	1.40 (1.32-1.48)	1.99 (1.89-2.09)	2.92 (2.75-3.10)				
Vanguard[Fem] Maxim[Tib]	2,368	70 (62 to 76)	41	0.43 (0.23-0.80)	1.83 (1.34-2.52)	3.06 (2.37-3.95)	4.58 (3.68-5.69)	5.17 (4.15-6.43)			

Brand ¹		Median	Male (%)	Time since primary							
	N	(IQR) age at primary		1 year	3 years	5 years	10 years	15 years	18 years		
All total knee replacements	1,265,502	70 (63 to 76)	43	0.43 (0.42-0.44)	1.47 (1.45-1.49)	2.10 (2.07-2.13)	3.19 (3.15-3.23)	4.31 (4.24-4.37)	5.12 (4.96-5.29)		
Attune[Fem] Attune FB[Tib]	33,769	70 (62 to 76)	44	0.39 (0.32-0.46)	1.44 (1.31-1.59)	2.06 (1.88-2.27)					
Attune[Fem] Attune RP[Tib]	5,770	70 (62 to 76)	44	0.26 (0.16-0.45)	0.92 (0.67-1.25)	1.37 (1.03-1.83)					
Columbus Cemented[Fem] Columbus CR/PS[Tib]	16,684	70 (64 to 77)	42	0.44 (0.35-0.56)	1.43 (1.25-1.63)	1.99 (1.77-2.23)	2.99 (2.65-3.38)				

Brand ¹ All total knee replacements		Median	HARD BUD LY Y	Time since primary							
	N	(IQR) age at primary 70 (63 to 76)	Male (%)	1 year	3 years	5 years	10 years	15 years	18 years		
	1,265,502		43	0.43 (0.42-0.44)	1.47 (1.45-1.49)	A REAL PROPERTY OF A READ PROPERTY OF A REAL PROPER	3.19 (3.15-3.23)	4.31 (4.24-4.37)	5.12 (4.96-5.29)		
Scorpio NRG[Fem:Tib]	14,111	70 (64 to 77)	42	0.41 (0.32-0.53)	1.58 (1.39-1.81)		3.63 (3.31-3.99)				
Scorpio[Fem:Tib]	3,272	68 (61 to 75)	45	0.37 (0.21-0.65)	2.16 (1.71-2.73)	3.11 (2.56-3.78)	4.65 (3.95-5.47)				
Scorpio[Fem] Scorpio NRG[Tib]	21,808	71 (64 to 77)	42	0.44 (0.36-0.54)	1.82 (1.65-2.01)	2.61 (2.41-2.84)	4.00 (3.74-4.28)				

Brand ¹		Median		Time since primary							
	N	(IQR) age at primary	Male (%)	1 year	3 years	5 years	10 years	15 years	18 years		
All total knee replacements	1,265,502	70 (63 to 76)	43	0.43 (0.42-0.44)	and the second se	and the second sec	0.0000000000000000000000000000000000000	4.31 (4.24-4.37)	100 million (100 million (100 million))		
LCS Complete[Fem] M.B.T.[Tib]	29,926	70 (63 to 76)	44 (0.42 0.36-0.51) (1.67 1.53-1.83)	2.47 (2.29-2.66)	3.61 (3.37-3.86)	4.39 (4.07-4.73)			

Brand ¹		Median		Time since primary							
	N	(IQR) age at primary	Male (%)	1 year	3 years	5 years	10 years	15 years	18 years		
All total knee replacements	1,265,502	70 (63 to 76)	43	0.43 (0.42-0.44)	1.47 (1.45-1.49)	2.10 (2.07-2.13)	3.19 (3.15-3.23)	4.31 (4.24-4.37)	5.12 (4.96-5.29)		
AGC[Fem]AGC V2[Tib]	28,950	71 (64 to 77)	42	0.30 (0.24-0.37)	1.58 (1.44-1.73)	2.22 (2.05-2.40)	3.52 (3.29-3.76)	5.31 (4.90-5.77)	6.78 (5.88-7.80)		

Brand ¹	Median			Time since primary							
	N	(IQR) age at primary	Male (%)	1 year	3 years	5 years	10 years	15 years	18 years		
All total knee replacements	1,265,502	70 (63 to 76)	43	0.43 (0.42-0.44)	1.47 (1.45-1.49)	2.10 (2.07-2.13)	3.19 (3.15-3.23)	4.31 (4.24-4.37)	5.12 (4.96-5.29)		
Optetrak CR[Fem] Optetrak[Tib]	1,641	70 (63 to 76)	43	0.86 (0.51-1.45)	3.44 (2.65-4.46)	4.89 (3.93-6.08)	8.17 (6.84-9.74)	10.72 (8.75-13.10)			

THANKS AND GN

